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Abstract

Any discussion of methodical problems in residual stress evaluation by diffraction (X-rays or neutrons) is based on the so-called `general

transformation equation'. The problem of the unknown strain-free lattice constants has to be treated by an appropriate use of the transforma-

tion equation. We outline several solutions known from the literature for this problem. In the most general case, we include the lattice

constants and the strain/stress tensor components as unkowns into the evaluation the general transformation equation. This results in a non-

linear equation system for the unknowns which can be solved numerically. q 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The theory of residual stress evaluation (RSE) has been

described in several review papers, for example by DoÈlle

(1979); Noyan and Cohen (1987); Scholtes (1991); Hauk

(1995); and Eigenmann and Macherauch (1995/1996). The

core of the theory is the `general transformation equation'

(GTE) which relates the measured strain 133 (hkl,C) 0 to the

six independent components of either the strain tensor 1
2$

133�hkl; C� 0 � �u32�2111 1 2u31u32112 1 2u31u33113

1 �u32�2122 1 2u32u33123 1 �u33�2133 �1�
or of the stress tensor s

2$

133�hkl;C� 0

�
�

1
2

S2�hkl��u31�2 1 S1�hkl���u11�2 1 �u21�2 1 �u31�2�
�
s11

1
�

1
2

S2�hkl��u32�2 1 S1�hkl���u12�2 1 �u22�2 1 �u32�2�
�
s22

1
�

1
2

S2�hkl��u33�2 1 S1�hkl���u13�2 1 �u23�2 1 �u33�2�
�
s33

1 2
�

1
2

S2�hkl�u31u32 1 S1�hkl��u11u12 1 u21u22 1 u31u32�
�
s12

1 2
�

1
2

S2�hkl�u31u33 1 S1�hkl��u11u13 1 u21u23 1 u31u33�
�
s13

1 2
�

1
2

S2�hkl�u32u33 1 S1�hkl��u12u13 1 u22u23 1 u32u33�
�
s23

�2�

The measurement takes place in the laboratory coordinate

system L along (by convention) the axis L3. Therefore, the

measured strain 133(hkl, C) 0 is the component, 133 of the

strain tensor expressed1 in L and has to be transformed

into the strain tensor expressed in the sample system P.

The necessary transformation matrix U (with elements uij)

from P to L depends on the diffractometer geometry, or

more explicitly, on the orientation of the sample with

respect to the diffraction plane. This orientation is expressed

by a set of suitable orientation angles C1, C2, C3. In order to

convert strains into stresses one needs elastic compliances.

In RSE they are called X-ray elastic constants S1(hkl),
1
2

S2�hkl� and depend on the lattice plane (hkl), the texture

within the sample, and particularly (if calculated) on the

assumptions (Voigt and Reuss model, etc.) about the

mechanical interaction of the crystallites in the polycrystal-

line sample, see Behnken and Hauk (1986).

The strain 1(hkl,C) is not truly measured, but calculated

according to

1�hkl;C� � d�hkl;C�2 d0�hkl�
d0�hkl� �3�

from the measured lattice plane distance d(hkl, C) which is

different from the strain-free lattice spacing d0(hkl) in the

presence of residual stresses. Eq. (3) poses the `fundamental

problem of RSE', because the strain-free lattice constants

a0, b0, c0, a0, b0, g0 of the lattice must be known in order to

calculate d0(hkl). Hauk (1991) gives an overview of this

problem. Since the sample contains residual stresses, one
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may doubt that it is possible to measure the strain-free

lattice constants of the sample under investigation. In the

following sections several procedures are outlined which

actually provide the strain free lattice constants under

certain restrictions. These restrictions concern the form

of the GTE and the elasticity and crystal class of the

material.

2. The sin2 C-law

The so-called sin2 C-law is nothing but a special form of

Eq. (2). If follows from the assumption s13 � s23 � s33.

For the following discussion we will change from 1(hkl, C)'

to d(hkl, c) in the GTE. Using Eq. (2) and Eq. (3) (and

assuming to be in the principal axis system of the stress

tensor) one arrives at (with the usual denominations for

the two orientation angles f and c )

d�hkl;f;C� �
�

1
2

S2�hkl��s11cos2f 1 s22sin2f�sin2C

1 s1�hkl��s11 1 s22�
�
d0�hkl�1 d0�hkl�: �4�

The unknown d0(hkl) enters into Eq. (4) as factor and as

an additional term. One can carry out an error analysis and

calculate the error Ds for s11, s22 caused by an error

sd0(hkl) in d0(hkl). One ®nds that the relative error Ds/sii

is equal to the relative error Dd0(hkl)/d0(hkl) which will

amount to a few 0.1 percent under normal circumstances.

Therefore it is practice to even arbitrarily set d0(hkl)�
d(hkl,f� 0, c� 0). If the sin2 c-law is applicable and if

high precision is not requested, then the d0-problem is of

minor importance.

3. Strain-free direction

From Eq. (3) we can de®ne a direction ~n�C*�along which

the strain vanishes. For that purpose we consider two

measurements for the two opposite sample orientations C
and -C. Then the condition for ~n�C*� is

1�hkl;C*�1 1�hkl;2C*� � 0 �5�
from which follows d�C*� � d�2C*� � d0. An explicit

equation for C* follows from Eq. (5) after insertion of

Eq. (2). For example, in the case of the usual fc -diffrakt-

ometer (sample tilt about the orientation angle c ) and

assuming f 33� 0 one obtains Hauk (1991)

sin 2c *
2 � 2S1�hkl�

1
2

S2�hkl� 1 1
s22

s11

� �
: �6�

From Eq. (4) one sees that plotting the measured lattice

spacings d(hkl, f � 0, c) for constant azimuthal angle

f � 08 over c will give s11 as the slope of the plotted

line. Correspondingly one obtains s22 from a plot for

f � 908. Inserting the resulting values into Eq. (6) will

give the strain free direction c* along which the strain

free lattice spacing d(hkl, C*)� d0(hkl) can be measured.

If s33 may not be assumed to be zero, then other proce-

dures for ®nding C* must be applied. However, all known

procedures rely on certain simplifying assumptions which

may not be valid for the actual sample under investigation.

If the material is elastically isotropic, then one may use the

elastic modulus E and the Poisson ratio n instead of X-ray

elastic constants. If one further assumes that v� 0.5 (this

assumption allows to lump together two terms containing

s33 in the sin2 w-law, please refer to Hauk (1991)), then one

gets (we do not cancel n
E
= 11n

E
because of the subsequently

necessary evaluation of Eqs. (8) and (9))

sin 2c* �
n

E
1 1 n

E

1 1
s22 2 s33

s11 2 s33

� �
: �7�

According to Eq. (4), for a plot of the measured lattice

spacing d(hkl, f , c ) over sin2 c one obtains

1 1 n

E
d0�s11 2 s33� for f � 0+

; �8�

1 1 n

E
d0�s22 2 s33� for f � 90+

: �9�

From these equations the quotient in Eq. (7) can be calcu-

lated and thus c*. Further procedures for the determination

of C* are described in the literature, e.g. the one from

Torbaty et al. (1983), but they all depend on certain assump-

tions which restrict their applicability.

4. Special strain/stress states

If the sample is known to have a distinct stress state with

some of the tensor elements sij� 0, then the evaluation of

the GTE may result in a procedure to determine the strain/

stress tensor and the strain-free lattice constant simulta-

neously. For thin polycrystalline ®lms on a bulk substrate

corresponding procedures have been developed, see Witt

and Vook (1968); Haase (1989); SegmuÈller and Murakami

(1985); Perry et al., (1992); Wieder (1995a); Wieder

(1995c). The main idea is due to Witt and Vook (1968).

For a thin ®lm (thickness of about 1 m) one may, assume

that s13� s23� s33� 0. Furthermore it is assumed that the

residual stress in the ®lm is caused by the mismatch between

the thermal expansion coef®cients af and as, of ®lm and

substrate, resulting in a thermal strain according to

1th� (af 2 as) (Td 2 Tm) where Td and Tm are the tempera-

tures of the ®lm during deposition and during measurement.

Making the reasonable assumptions that 1th� 111� 122 and

112� 0, one arrives from Eq. (1) at the following linear

equation system Eqs. (10)±(12) for the determination of

s11, s22, s33. In Eqs. (10)±(12), the coef®cients Sijkl are the

elastic compliances of the single crystal transformed to the

sample system P.
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1th � 111 � S1111s11 1 S1122s22 1 �S1112 1 S1121�s12 �10�

1th � 122 � S2211s11 1 S2222s22 1 �S2212 1 S2221�s12 �11�

0 � 112 � S1211s11 1 S1222s22 1 �S1212 1 S1221�s12: �12�
Once s11, s22, s33 have been found, the remaining

unknown strain tensor components 133, 123, 113 follow

immediately from

133 � S3311s11 1 S3322s22 1 �S3312 1 S3321�s12 �13�

123 � S2311s11 1 S2322s22 1 �S2312 1 S2321�s12 �14�

113 � S1311s11 1 S1322s22 1 �S1312 1 S1321�s12: �15�

The connection to the fundamental problem of RSE is

provided by the GTE again. For simplicity we restrict

ourselves to cubic materials (a1� a2� a3� a) here, but

the procedure is valid for any crystal class. The lattice

constant a� a(hkl, uvw) will depend on the measurement

direction (given by the indices u, v, w of the lattice plane

normal ~n �uvw�) and on the lattice plane indices because of

the strain 1(hkl, uvw) acting on the lattice plane (hkl) in

orientation ~n(uvw) within S. The explicit relation

a�hkl� � a01�hkl; uvw�1 a0 �16�
is nothing but the GTE in a particular form. One can use Eq.

(16) to simultaneously determine 1
2$

and a0 from measured

re¯ection positions Q(hkl,C) (where C indicates the

measurement direction within P) by a least-square ®t

(Wieder, 1996b)

The above outlined procedure is just an example for

procedures for the simultaneous determination of 1
2$

or s
2$

and strain-free lattice constants a0 b0, c0 adapted to the

material under investigation. One can think of correspond-

ing procedures for material classes other than thin ®lms. The

main advantage of these adapted procedures is to take into

account only tensor components which will be different

from zero and to neglect all other components which

reduces the number of unknowns. However, in the general

case all six tensor components may be different from zero

and then correspondingly a general procedure must be

applied.

5. General strain/stress state

If the full strain/stress tensor and the strain free lattice

constants are to be determined simultaneously, then the

GTE must be evaluated in its full form. We restrict the

discussion to the GTE in Eq. (1), all arguments below

apply equally well to the use of Eq. (2). Using Eq. (3) the

GTE (1) takes on the form

d�hkl;C� � ��u31�2111 1 2u31u32112 1 2u31u33113

1 �u32�2122 1 2u32u33123 1 �u33�2133�d0�hkl�
1 d0�hkl�: (17)

In Eq. (17) the strain-free lattice spacing d0(hkl) appears

explicitly as unknown on the right hand side. Since the

tensor components 1ij are also unknown and since products

of the form 1ijd0(hkl) arise, this equation is non-linear in the

unknowns. Each single measurement of a re¯ection position

Q(hkl, C) and thus d(hkl,C) will provide us with one single

equation of the form Eq. (17). The idea of any general

procedure is to collect a suf®cient number of linearly inde-

pendent equations of the form Eq. (17) to yield an equation

system from which all unkowns can be calculated. Several

procedures of this kind have been presented (Peiter and

Wern, 1987; Wern, 1991, Wieder, 1996a; Wieder, 1995b),

even depth-dependent (Genzel, 1999).

Before showing examples we want to discuss whether the

equation system Eq. (17) is solvable. Recently Eigenmann

and Macherauch (1995/1996) (see section 8.3 of the cited

paper) stated that a simultaneous determination of the full

stress tensor (with s33 ± 0) and strain-free lattice constants

is impossible. Eigenmann argues using a form of the GTE

(eq. 133 in the cited paper) where he supresses the (hkl)-

dependence of the GTE. Then his argument is right, one can

not discern between changes in a hydrostatic stress state or

corresponding changes in d0 from the change in u0 for just a

single (hkl). However, the GTE is (hkl)-dependent, we are

allowed to take into account not just one (hkl)-re¯ection (as

in traditional RSE), but any (hkl)-re¯ection which is avail-

able from the diffraction experiment.

However, even taking the (hkl)-dependence into account

one may still doubt whether the equation system is solvable.

The argument supporting the doubt is as follows: ªAny

change in d0(hkl) can be compensated by a corresponding

opposite change in 1ij.º We give the following answer to this

argument. If we inspect the dependency of d(hkl,C) on 1ij

and on d0(hkl) by forming the partial derivates, then we see

that these dependencies are of different analytical form.

Once we have a given set of equations which form a discrete

restriction in the solution space, then it matters how a change

in the variables changes the data. Speaking in a very loose

manner, we have some sort of `regularisation' by discretiza-

tion which makes the equations system solvable.

Two main solution methods are available from mathe-

matics for the problem in question, namely dedicated solu-

tion methods for nonlinear equation systems and the (more

general) least-squares solution methods. If we intend to

solve the equation system by one of the common iterative

solution methods for non-linear equation systems, then we

even can examine whether such an iterative method will

converge. Banach's ®xpoint theorem can be applied. From
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this analysis (see Appendix A) we see that it is possible to

solve the non-linear equation system Eq. (17) in principle.

However, experimental data are always connected with

experimental errors. The error propagation from the experi-

mental data through the calculation into the results has to be

analysed. We are not aware of such an exhaustive analysis

which is therefore left for future work.

From the praxis of numerical data analysis one will tend

to apply a least-squares method to solve the equation system

Eq. (17). Least-squares routines are more easy to handle and

have the advantage to average about (partially self-contra-

dictory) experimental errors in the data. The drawback from

the mathematical viewpoint is that no least-squares method

is known which is guaranteed to end in the global minimum

which corresponds to the solution of Eq. (17). However, one

can perform numerical simulations to test the feasibility of

the procedure actually implemented. In (Wieder, 1995b) a

computer program (named sbgbbg) has been presented

which performs such a least-squares analysis. Among

others, sbgbbg allows to calculate re¯ection positions

Q(hkl, C)sim from a given tensor 1
2$

or s
2$

and given strain-

free lattice constants. Then one can use sbgbbg to calculate

1
2$

or s
2$

, and the lattice constants from the set of simulated

Q(hkl, C)sim. We carried out several simulations for strain

and stress tensors of arbitrary components. These simula-

tions show that it is possible to determine simultaneously

1
2$

or s
2$

, and the strain-free lattice constants also in the tri-

axial case. Table 1 gives some results of simulations.

The comparison between given and calculated quantities

gives an impression of the numerical accuracy achievable

by a least squares ®t. Up to now, an exhaustive error analy-

sis has not been made for this least squares routine imple-

mented in SBGBBG. Table 1 is meant as a ®rst example

only. Depending on the requested accuracy the present

accuracy may be suf®cient of insuf®cient. If one intends

to do stress analysis with an accuracy of ^ 1 MPa as

seems to be necessary for geological applications, then the

procedure in question is not good enough. However, in other

cases one might be glad to have a reasonable estimate of the

stresses which can be obtained by this procedure.

As an example for real data analysed by SBGBBG, the

following measurement on a thin ®lm of ion-plated alumi-

nium on a silicon wafer may be mentioned. The measure-

ment was done in grazing incidence diffraction with parallel

beam geometry. Details on residual stress evaluation by

grazing incidence diffraction can be found elsewhere

(Wieder, 1995c). Nine different lattice planes (hkl) (from

(111) to (224)) were used. From Table 2 one gets an impres-

sion about the changes in 1
2$

calculated with a0 set to be

equal to the literature value for bulk Al and with a0 simul-

taneously ®tted to the data. For all practical purposes in

residual stress determinations on thin ®lms, these differ-

ences are negligible.

As a more dif®cult example, where two unknown lattice

constants a0 and c0 are to be ®tted, the results for a thin ®lm

of galvanic zinc are provided in Table 3.

6. Rietveld Analysis

Sections 2±5 concerned topics from RSE by diffraction in

T. Wieder / Journal of Structural Geology 22 (2000) 1601±16071604

Table 1

Simultaneous calculation of the strain tensor 1
2$

or the stress tensor s
2$

and

the strain free lattice constant a0 for a simulated X-ray diffraction experi-

ment on copper in grazing incidence diffraction. Simulated Bragg positions

Q(hkl, C)sim were calculated from an arbitrarily given tensor 1
2$

or s
2$

(®rst

column) and given a0. From this set of simulated Q(hkl, C)sim the tensor

1
2$

or s
2$

was (re-)calculated (right column).

Table 2

1
2$

for an ion-plated aluminium thin ®lm, calculated without (left) and with

(right) ®t of a0



the traditional manner which means RSE by analysing

re¯ection positions Q(hkl,C). An X-ray or neutron diffrac-

togram of a polycrystalline sample contains far more infor-

mation then just the re¯ection positions. For polycrystalline

materials, one can perform a Rietveld analysis of the entire

scattered intensity I(Q). One forms a theoretical model of

the structure and ®ts the theoretical intensity I(Q)theo calcu-

lated for the model structure to the measured intensity I(Q).

The structure parameters like lattice constants a0 b0, c0 are

parameters of the ®t. The ®rst Rietveld analyses were done

to re®ne known structure models. Today, complete structure

analyses from powder data are feasible. As progress

continues, in the last years the description of the samples

`real structure', i.e. crystallite size, texture, strain and stress,

has become a major application of the Rietveld analysis (Le

Bail, 1992; Ferrari and Lutterotti, 1994; Scardi et al., 1993).

New Rietveld programs emerge which explicitly take into

account residual stresses (Lutterotti, 1999).

We do not intend to describe these Rietveld-based proce-

dures for RSE. We just stress that these Rietveld procedures

(per se) simultaneously determine strain-free lattice

constants and strain/stress tensors simultaneously. As in

traditional RSE, measurements for several different sample

orientations (within L) have to be done in order to get

enough information to ®t a strain or stress tensor to

the data. We expect that these procedures will become

standard for the `real structure analysis' of materials,

including RSE.2

7. Discussion

The acceptance of a method depends on the requirements

to be ful®lled by the method. All the above outlined proce-

dures for evaluating the strain-free lattice constants are of a

certain accuracy and one will accept a certain method if its

accuracy is considered to be suf®cient. This suf®ciency will

depend on the samples under investigation. For bulk shot-

peened steel surfaces often one is interested just in the sign

(1 or 2) of the stresses (tensile or compressive). An error of

^50 MPa is considered as acceptable in common RSE. For

thin ®lms (from physical vapour deposition) one is content

with even less accuracy. In the opinion of the present

authors, the available procedures for the fundamental

problem of RSE are of suf®cient accuracy if compared to

the usually requested accuracy in RSE. The situation may be

different for geological applications, where an error of

maximal ^1 MPa has been claimed (Pintschovius, 1999).

However, such a small error limit poses a problem to RSE

T. Wieder / Journal of Structural Geology 22 (2000) 1601±1607 1605

Table 3

1
2$D

; s
2$D

or for a thin ®lm of galvanic zinc, calculated without (left) and with (right) ®t of a0, c0

2 The developers of Rietveld procedures do not care about the deep-

rooted doubts of traditional RSA concerning the simultaneous determina-

tion of 1
2$

and a0.



even if the strain-free lattice constants may be assumed to be

known.
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Appendix A

Without mathematical strictness we outline how one can

prove the solvability of the non-linear equation system (17)

by use of Banach's ®x point theorem:Consider a non-linear

equation system F1; :::;Fn ; F of n equations Fi which can

be brought into the form F�x� � x which then can be solved

in the rectangular, n-dimensional interval A , Rn by an

iteration n , n 1 1,¼

F � �xv� � xv11 �A1�
if Eq. (A1) has a ®x point x* on A (Bronstein et al., 1998). A

suf®cient condition for Eq. (A1) to be ful®lled can be found

by means of the Jacobi matrix (Graf von Finkenstein, 1977)

J�x1;¼; xn� �
dF1

dx1

¼ dF1

dxn

dF1

dx1

¼ dF1

dxn

0BBB@
1CCCA �A2�

If for any matrix norm k J k# L , 1 for all x [ A, then a ®x

point exists in A. The partial derivations of the GTE (17)

with respect to the unknowns 1ij and a0 (cubic case) are

(with Einstein's summation convention in place)

dd

d1ij

� u3iu3j

1����������������
h2 1 k2 1 l2
p a0 �A3�

dd

da0

� u3iu3j1ij

1����������������
h2 1 k2 1 l2
p a0 1

1����������������
h2 1 k2 1 l2
p �A4�

Since the k uij k as elements of a rotation matrix are always

smaller than 1 and the k 1ij k are smaller than < 0:05 one

can conclude that Eq. (A4) is always smaller than 1. For Eq.

(A3) all terms are smaller than 1, except the term a0 which

may be .1. Using a corresponding scaling of Eq. (17) will

allow to keep a0 , 1. We conclude that for every element jij

of J one has jij , 1. Then any matrix norm like the row norm���������������P
j j2i�const; j

q
or the column norm will be less than L , 1 on

A (which follows from the scaling of a0 and from 1ij , 0.05).
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